
CORE: Benchmarking LLMs’ Code Reasoning
Capabilities through Static Analysis Tasks

xDanning Xie*, Mingwei Zheng*, Xuwei Liu, Jiannan Wang, Chengpeng Wang, Lin Tan, Xiangyu Zhang

🥑
🔹 LLMs are widely used for coding tasks
🔹 LLMs are prompted with high-level objectives (e.g., identify buggy lines)
 or used directly as static analyzers

🔹 It requires a deep understanding of the program semantics:
● how values propagate through statements,
● how control structures govern program execution,
● how different parts of the program influence one another.

🔹 Existing benchmarks: in end-to-end fashion (e.g., whether the bug is fixed)
🔹 No direct fine-grained assessment of LLM’s core program analysis skills

🔹 High-quality, human-verified
🔹 Multi-lingual: C/C++, Java, Python
🔹 Evaluates LLMs on fundamental static analysis tasks
🔹 Leverages semantics-aware diverse sampling strategy

● Ensures both complexity and diversity
🔹 Consists of 12,553 diverse task instances from 180 programs
🔹 Balanced distribution of LoC: 21–40, 41–60, 61–80, 81–100

Captures how the value of one variable can
influence another through data or control
dependencies.
● Explicit: direct assignment
● Implicit: control conditions determine

which value a variable receives

Motivation

CORE

Key Results

Prompt Example (Simplified)

Datasets & Benchmarks Track

[INSTRUCTIONS]

You are a program-analysis assistant. Perform a **static** data-dependence analysis on a given code snippet, treating each branch or
loop condition as potentially taking any outcome, without using semantic or symbolic execution to prune paths.

1. Data Dependence Definition
 Data dependence captures the influence of data flow between variables.
 We denote each variable instance as `(var,lineNumber)`, meaning the variable `var` defined or updated at `lineNumber`.
 Direct Data Dependence: A variable instance `(varB,lineB)` is **directly** data-dependent on `(varA,lineA)` if …
 A variable instance `(varB,lineB)` is data-dependent on `(varA,lineA)` if there is a **transitive** (indirect) chain of **direct** data
dependencies from `(varA,lineA)` to `(varB,lineB)`.

2. Output Format
 <json format explanation>
 <In Pairwise Query only> You only need to provide **one** valid chain of data dependence if you conclude a data dependence
exists, even if multiple possible chains exist.

3. Intraprocedural Data Dependence
 All dependence analysis is performed within **a single function** …

4. Example Code Snippet
 <6 examples with code, question, output in specified format, and explanation>

[YOUR TURN]

```Python

```

import math,string,itertools...
...
def main():
 …
 for t in aa[1:]:
 if a < x:
 if nt <= t:
 xl -= lc * s
 xr += (rc+xc) * s
 lc -= nc
 rc += xc
 heapq.heappush(rq,x)
 else:
 nx = rq[0]
 nc = c[nx]
 s = nx - x
 lc += xc
 ...
 return '\n'.join(r)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
19
20

{
"DataDependence": true,
 "Trace": [
 { "from": ["rq", 12], "to": ["nx", 14] },
 { "from": ["nx", 14], "to": ["nc", 15] },
 { "from": ["nc", 15], "to": ["lc", 10] }
]
}

Question: Does `(rq,12)` have data dependence over
`(lc,10)` in function `main`? If so, provide a trace.
Output:

Question: Which variable instances have data dependence
over `(lc,10)`in function `main`? List all such variables.
Output:

{
 "DataDependenceSources": [
 ["lc", 17],
 ["xc", …],
 ["nc", 15],
 ["nx", 14],
 ["c", …], …
]
}

✨ ✨ Spotlight

x = 0
if x == 0:
 y = 1
else:
 y = 0
z = y + 1

1
2
3
4
5
6

x → y → z

🔹 Pairwise Query

🔹 Target-centric Query

● Given two variables/lines,
○ Classification: ask whether a specific dependency exists
○ Trace Generation: if so, provide a trace

● Metrics: Precision/Recall/F1, Correct Trace Rate (CT)

● Given one variable/line,
○ Dependency Enumeration: list all other variables/lines

that have the specified dependency relation over it
● Metrics: Exact Match (EM), Precision/Recall/F1

CoRe CoRe Lite
Task Type Positive Negative Total Positive Negative Total

Data Dependency 1,814 2,800 4,614 209 381 590
Control Dependency 1,693 1,959 3,652 239 250 489

Information Flow 2,291 1,996 4,287 291 214 505
Total 5,798 6,755 12,553 739 845 1,584

The value of one variable depends on the value of another

Whether the execution of one statement is governed by another

🔹Information flow

🔹 Data Dependency

🔹 Control Dependency

🔹 Models perform well on dependency classification, with reasoning models achieving ≥80% F1.

🔹 Dependency source enumeration is the most difficult, with most reasoning models <40%.

🔹 Model performance declines as the program complexity increases and involves multi-step reasoning.

Dependency Classification Trace Generation Dependency Enumeration

Ground Truth

Pairwise Query Target-centric Query

Ground Truth

https://corebench.github.io/

