
🥑 CORE: Benchmarking LLMs’ Code Reasoning
Capabilities through Static Analysis Tasks

1

Spotlight

Danning Xie, Mingwei Zheng, Xuwei Liu, Jiannan Wang, Chengpeng Wang,
Lin Tan, Xiangyu Zhang

NeurIPS 2025 Datasets & Benchmarks

LLMs are Widely Adopted in Coding Tasks

• LLMs are widely used in coding tasks: Code generation, taint
analysis, fuzzing, etc.

• LLMs are prompted with high-level objectives (e.g., identify buggy lines)
or used directly as static analyzers.

• They require a deep understanding of the program semantics

2

NeurIPS 2025

Example: Applying LLMs to Fuzzing

3

int type, len, i = 0;
while (i < n) {
 type = a[i];
 if (type == 0) {
 i++; continue;
 }
 if (i + 1 >= n) return;
 len = a[i + 1];
 if (i + len > n) return;
 if (type == 1)
 // vulnerable sink
 memcpy(out, a + i + 2, len);
 i += len + 2;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

NeurIPS 2025

Example: Applying LLMs to Fuzzing

4

int type, len, i = 0;
while (i < n) {
 type = a[i];
 if (type == 0) {
 i++; continue;
 }
 if (i + 1 >= n) return;
 len = a[i + 1];
 if (i + len > n) return;
 if (type == 1)
 // vulnerable sink
 memcpy(out, a + i + 2, len);
 i += len + 2;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

To trigger line 12, the input needs to
satisfy conditions at line 2, 4, 7, 9, 10

NeurIPS 2025

Model’s Deep Understanding of the Program Semantics is not Well Tested

5

It requires model to go beyond surface-level pattern matching and understand:
• how values propagate through statements;
• how control structures govern program execution;
• how different parts of the program influence one another.

Such abilities are under-evaluated

• Existing benchmarks evaluate LLMs upon code-centric tasks in an end-to-end fashion
(e.g., whether the bug is fixed).

• They do not offer direct fine-grained assessment of LLMs’ core program analysis skills.

NeurIPS 2025

🥑 CORE: Benchmarking LLMs’ Code Reasoning
Capabilities through Foundamental Static Analysis Tasks

• High-quality, human-verified

• Multi-lingual: C/C++, Java, Python

• Evaluate LLMs on fundamental static analysis tasks: data dependency,
control dependency, information flow.

• Leverage Semantics-Aware Diverse Sampling strategy

• Consists of 12,553 diverse task instances from 180 programs

6

NeurIPS 2025

Background & Motivation

7

Three core reasoning tasks:

•Data Dependency

•Control Dependency

• Information Flow

NeurIPS 2025

Background & Motivation

8

Three core reasoning tasks:

•Data Dependency

•Control Dependency

• Information Flow

A data dependency occurs when the value of one variable depends on the value of
another, typically arising when variables are assigned and then subsequently used [1].

[1] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools. pearson Education, 2007.

NeurIPS 2025

Background & Motivation

9

Three core reasoning tasks:

•Data Dependency

•Control Dependency

• Information Flow

Control dependency captures whether the execution of one statement is governed
by another [2].

[2] Andy Podgurski and Lori A. Clarke. A formal model of program dependences and its implications for software testing, debugging, and maintenance. IEEE Transactions on software Engineering, 16(9):965–979, 1990.

NeurIPS 2025

Background & Motivation

10

Three core reasoning tasks:

•Data Dependency

•Control Dependency

•Information Flow

Information flow [3,4] captures how the value of one variable can influence another
through data or control dependencies. It may be explicit, as in direct assignments,
or implicit, when control conditions determine which value a variable receives.

[3] Dorothy E Denning and Peter J Denning. Certification of programs for secure information flow. Communications of the ACM, 20(7):504–513, 1977.
[4] Samir Genaim and Fausto Spoto. Information flow analysis for java bytecode. In International Workshop on Verification, Model Checking, and Abstract Interpretation, pages 346–362. Springer, 2005.

NeurIPS 2025

Task Formulation

• Pairwise Query: given two program elements (variables or lines),
determine whether a specific dependency exists. If so, provide a valid trace.

11

<Detailed definition, instruction, and examples>
Below is your target snippet.

<target code with line number>

Question: Does (src_var, src_line) have data dependence over (dst_var, dst_line)
in function target_function_name? If so, provide a trace.
Output:

• Target-centric Query (Dependency Source Enumeration): given a single
program element, list all other elements in the same function that have the
specified dependency relation over it.

Question: Which lines have control dependence over dst_line in function
target_function_name? List all such lines.

NeurIPS 2025

Experimental Setup - Models

12

Model Size Reasoning?
Claude 3.7 - ✓
Claude 3.5 - ✗

DeepSeek R1 671B ✓
DeepSeek V3 671B ✗

Gemini 2.5 Pro - ✓
GPT o3 - ✓

GPT o4-mini - ✓
GPT 4o - ✗

Llama 3.1 405B ✗

Qwen 3 235B ✓

10 models in total: 6 with reasoning capabilities

NeurIPS 2025

Key Takeaways of Qualitative Study

• LLMs are good at identifying dependencies, but still struggle with tasks that
require deeper semantic understanding and multi-step reasoning.

• Reasoning models consistently outperform non-reasoning ones

• Performance drops significantly in the presence of complex control
structures, longer function bodies, and backward or non-sequential
dependency patterns.

13

NeurIPS 2025

• A high-quality benchmark for evaluating LLMs on fundamental static analysis
tasks: including data dependency, control dependency, and information flow

• CORE is multi-lingual: C/C++, Java, Python

• It includes 12,553 human-verified, diverse instances

• Evaluated on10 state-of-the-art LLMs & Qualitative analysis

14

🥑 CORE: Benchmarking LLMs’ Code Reasoning Capabilities
through Static Analysis Tasks

Spotlight
NeurIPS 2025 Datasets & Benchmarks

Danning Xie, Mingwei Zheng, Xuwei Liu, Jiannan Wang, Chenpeng Zhang, Lin Tan, Xiangyu Zhang

https://corebench.github.io/

